13 research outputs found

    Autophagy Genes for Wet Age-Related Macular Degeneration in a Finnish Case-Control Study

    Get PDF
    Age-related macular degeneration is an eye disease that is the main cause of legal blindness in the elderly in developed countries. Despite this, its pathogenesis is not completely known, and many genetic, epigenetic, environmental and lifestyle factors may be involved. Vision loss in age-related macular degeneration (AMD) is usually consequence of the occurrence of its wet (neovascular) form that is targeted in the clinic by anti-VEGF (vascular endothelial growth factor) treatment. The wet form of AMD is associated with the accumulation of cellular waste in the retinal pigment epithelium, which is removed by autophagy and the proteosomal degradation system. In the present work, we searched for the association between genotypes and alleles of single nucleotide polymorphisms (SNPs) of autophagy-related genes and wet AMD occurrence in a cohort of Finnish patients undergoing anti-VEGF therapy and controls. Additionally, the correlation between treatment efficacy and genotypes was investigated. Overall, 225 wet AMD patients and 161 controls were enrolled in this study. Ten SNPs (rs2295080, rs11121704, rs1057079, rs1064261, rs573775, rs11246867, rs3088051, rs10902469, rs73105013, rs10277) in the mTOR (Mechanistic Target of Rapamycin), ATG5 (Autophagy Related 5), ULK1 (Unc-51-Like Autophagy Activating Kinase 1), MAP1LC3A (Microtubule Associated Protein 1 Light Chain 3 α), SQSTM1 (Sequestosome 1) were analyzed with RT-PCR-based genotyping. The genotype/alleles rs2295080-G, rs11121704-C, rs1057079-C and rs73105013-T associated with an increased, whereas rs2295080-TT, rs2295080-T, rs11121704-TT, rs1057079-TT, rs1057079-T, rs573775-AA and rs73105013-C with a decreased occurrence of wet AMD. In addition, the rs2295080-GG, rs2295080-GT, rs1057079-TT, rs11246867-AG, rs3088051-CC and rs10277-CC genotypes were a positively correlated cumulative number of anti-VEGF injections in 2 years. Therefore, variability in autophagy genes may have an impact on the risk of wet AMD occurrence and the efficacy of anti-VEGF treatment

    SOURCES OF HEALTHCARE WORKERS' COVID-19 INFECTIONS AND RELATED SAFETY GUIDELINES

    Get PDF
    Objectives: To evaluate the effectiveness of safety guidelines in the workplace, the authors analyzed the work-related exposure to SARS-CoV-2 and the source of COVID-19 infections among healthcare workers (HCWs), together with the use of personal protective equipment (PPE). Material and Methods: A cross-sectional prospective study was conducted in tertiary hospitals in the Uusimaa region, Finland, with 1072 volunteers being enrolled in the study from among the HCWs at the Helsinki University Hospital. Overall, 866 (80.8%) HCWs (including 588 nurses, 170 doctors, and 108 laboratory and medical imaging nurses) completed the questionnaire by July 15, 2020, with 52% of the participants taking care of COVID-19 patients. The participants answered a structured questionnaire regarding their use of PPE, the ability to follow safety guidelines, exposure to COVID-19, and the source of potential COVID-19 infections. The participants with COVID-19 symptoms were tested with the SARS-CoV-2 real-time polymerase chain reaction method. All infected participants were contacted, and their answers were confirmed regarding COVID-19 exposure. Results: In total, 41 (4.7%) participants tested positive for SARS-CoV-2, with 22 (53.6%) of infections being confirmed or likely occupational, and 12 (29.3%) originating from colleagues. In 14 cases (63.6%), occupational infections occurred while using a surgical mask, and all infections originating from patients occurred while using a surgical mask or no mask at all. No occupational infections were found while using an FFP2/3 respirator and following aerosol precautions. The combined odds ratio for working at an intensive care unit, an emergency department, or a ward was 3.4 (95% CI: 1.2-9.2, p = 0.016). Conclusions: A high infection rate was found among HCWs despite safety guidelines. Based on these findings, the authors recommend the use of FFP2/3 respirators in all patient contacts with confirmed or suspected COVID-19, along with the use of universal masking, also in personnel rooms.Peer reviewe

    Psychiatric disorders are a common prognostic marker for worse outcome in patients with idiopathic intracranial hypertension

    Get PDF
    Objective Idiopathic intracranial hypertension (IIH) is aetiologically unknown disorder that associates with endocrinological disturbances, including dysfunction of hypothalamic-pituitary-adrenal-axis. Neuroendocrinological dysfunctions have also been characterized in psychiatric disorders, and therefore we investigated the presence of psychiatric disorders of patients with IIH in a well-defined cohort. Patients and Methods A total of 51 patients with IIH were included. Patient demographics, symptoms, imaging data, ophthalmological and clinical findings were collected. Results At the time of diagnosis the mean age was 32.5years (SD 10.7), the body mass index was 37.1 kg/m2 (SD 7.4), and the opening pressure 29.1 mmHg (SD 6.2). A total of 88.2% of patients were female and 45.1% were diagnosed with a psychiatric co-morbidity prior to IIH diagnosis. The mean follow-up time was 4.4 years (SD 5.4). The overall treatment outcome was significantly poorer on a group of patients with psychiatric diagnosis when compared to individuals without such history (p = 0.001), but there were no differences in the resolution of papilledema (p = 0.405). Patients with IIH and psychiatric disorders had more often empty sella on their imaging at diagnosis when compared to patients without psychiatric co-morbidity (p = 0.044). Conclusion Psychiatric disorders are highly prevalent in patients with IIH and associate with worse subjective outcomes. These findings advocate for monitoring the mental health of patients with IIH and warrant further multidisciplinary research to understand the potentially underlying psychosocial and neuroendocrinological mechanisms.Peer reviewe

    Cerebrospinal fluid dynamics in idiopathic intracranial hypertension : a literature review and validation of contemporary findings

    Get PDF
    Publisher Copyright: © 2021, The Author(s).Background: Idiopathic intracranial hypertension (IIH) is a rare disease of unknown aetiology related possibly to disturbed cerebrospinal fluid (CSF) dynamics and characterised by elevated intracranial pressure (ICP) causing optic nerve atrophy if not timely treated. We studied CSF dynamics of the IIH patients based on the available literature and our well-defined cohort. Method: A literature review was performed from PubMed between 1980 and 2020 in compliance with the PRISMA guideline. Our study includes 59 patients with clinical, demographical, neuro-ophthalmological, radiological, outcome data, and lumbar CSF pressure measurements for suspicion of IIH; 39 patients had verified IIH while 20 patients did not according to Friedman’s criteria, hence referred to as symptomatic controls. Results: The literature review yielded 19 suitable studies; 452 IIH patients and 264 controls had undergone intraventricular or lumbar CSF pressure measurements. In our study, the mean CSF pressure, pulse amplitudes, power of respiratory waves (RESP), and the pressure constant (P0) were higher in IIH than symptomatic controls (p < 0.01). The mean CSF pressure was higher in IIH patients with psychiatric comorbidity than without (p < 0.05). In IIH patients without acetazolamide treatment, the RAP index and power of slow waves were also higher (p < 0.05). IIH patients with excess CSF around the optic nerves had lower relative pulse pressure coefficient (RPPC) and RESP than those without (p < 0.05). Conclusions: Our literature review revealed increased CSF pressure, resistance to CSF outflow and sagittal sinus pressure (SSP) as key findings in IIH. Our study confirmed significantly higher lumbar CSF pressure and increased CSF pressure waves and RAP index in IIH when excluding patients with acetazolamide treatment. In overall, the findings reflect decreased craniospinal compliance and potentially depleted cerebral autoregulation resulting from the increased CSF pressure in IIH. The increased slow waves in patients without acetazolamide may indicate issues in autoregulation, while increased P0 could reflect the increased SSP.Peer reviewe

    Cerebrospinal fluid dynamics in idiopathic intracranial hypertension: a literature review and validation of contemporary findings

    Get PDF
    Background Idiopathic intracranial hypertension (IIH) is a rare disease of unknown aetiology related possibly to disturbed cerebrospinal fluid (CSF) dynamics and characterised by elevated intracranial pressure (ICP) causing optic nerve atrophy if not timely treated. We studied CSF dynamics of the IIH patients based on the available literature and our well-defined cohort. Method A literature review was performed from PubMed between 1980 and 2020 in compliance with the PRISMA guideline. Our study includes 59 patients with clinical, demographical, neuro-ophthalmological, radiological, outcome data, and lumbar CSF pressure measurements for suspicion of IIH; 39 patients had verified IIH while 20 patients did not according to Friedman's criteria, hence referred to as symptomatic controls. Results The literature review yielded 19 suitable studies; 452 IIH patients and 264 controls had undergone intraventricular or lumbar CSF pressure measurements. In our study, the mean CSF pressure, pulse amplitudes, power of respiratory waves (RESP), and the pressure constant (P0) were higher in IIH than symptomatic controls (p p p p Conclusions Our literature review revealed increased CSF pressure, resistance to CSF outflow and sagittal sinus pressure (SSP) as key findings in IIH. Our study confirmed significantly higher lumbar CSF pressure and increased CSF pressure waves and RAP index in IIH when excluding patients with acetazolamide treatment. In overall, the findings reflect decreased craniospinal compliance and potentially depleted cerebral autoregulation resulting from the increased CSF pressure in IIH. The increased slow waves in patients without acetazolamide may indicate issues in autoregulation, while increased P0 could reflect the increased SSP.</p

    Loss of NRF-2 and PGC-1α genes leads to retinal pigment epithelium damage resembling dry age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a multi-factorial disease that is the leading cause of irreversible and severe vision loss in the developed countries. It has been suggested that the pathogenesis of dry AMD involves impaired protein degradation in retinal pigment epithelial cells (RPE). RPE cells are constantly exposed to oxidative stress that may lead to the accumulation of damaged cellular proteins, DNA and lipids and evoke tissue deterioration during the aging process. The ubiquitin-proteasome pathway and the lysosomal/autophagosomal pathway are the two major proteolytic systems in eukaryotic cells. NRF-2 (nuclear factor-erythroid 2-related factor-2) and PGC-1 alpha (peroxisome proliferator-activated receptor gamma coactivator-1 alpha) are master transcription factors in the regulation of cellular detoxification. We investigated the role of NRF-2 and PGC-1 alpha in the regulation of RPE cell structure and function by using global double knockout (dKO) mice. The NRF-2/PGC-1 alpha dKO mice exhibited significant age-dependent RPE degeneration, accumulation of the oxidative stress marker, 4-HNE (4-hydroxynonenal), the endoplasmic reticulum stress markers GRP78 (glucose-regulated protein 78) and ATF4 (activating transcription factor 4), and damaged mitochondria. Moreover, levels of protein ubiquitination and autophagy markers p62/SQSTM1 (sequestosome 1), Beclin-1 and LC3B (microtubule associated protein 1 light chain 3 beta) were significantly increased together with the Iba-1 (ionized calcium binding adaptor molecule 1) mononuclear phagocyte marker and an enlargement of RPE size. These histopathological changes of RPE were accompanied by photoreceptor dysmorphology and vision loss as revealed by electroretinography. Consequently, these novel findings suggest that the NRF-2/PGC-1 alpha dKO mouse is a valuable model for investigating the role of proteasomal and autophagy clearance in the RPE and in the development of dry AMD.Peer reviewe

    Should we avoid colleagues in leisure time during the coronavirus disease 2019 (COVID-19) pandemic?

    Get PDF
    To the Editor— Coronavirus disease 2019 (COVID-19) is a significant occupational threat for healthcare workers (HCWs).1 The high number of infected HCWs has been explained with occupational exposure to severe acute respiratory coronavirus virus 2 (SARS-CoV-2). Hospitals have implemented infection control measures including proper personal protective equipment (PPE), universal masking in hospitals, and safety distance between coworkers to reduce the transmission.2,3 However, studies of HCW exposure to COVID-19 outside the workplace have not been published.Non peer reviewe

    Oxidative Stress and Mitochondrial Damage in Dry Age-Related Macular Degeneration Like NFE2L2/PGC-1α -/- Mouse Model Evoke Complement Component C5a Independent of C3

    No full text
    SIMPLE SUMMARY: Age-related macular degeneration (AMD) is an eye disease that results in permanent loss of vision due to degeneration in the central portion of the retina called the macula. Patients with severe visual loss have reduced quality of life and the risk of death is 2.4 times higher than the general population. Currently, there is no treatment to stop or cure dry AMD. Aging-associated chronic oxidative stress and inflammation are known to be involved in AMD pathology. To investigate the molecular mechanism behind the cause and to develop novel therapy, we have created and validated an animal model mimicking clinical features of dry AMD. Here, we show previously unknown thrombin-mediated complement component C5a activation in the degenerative retina without upregulation of C3. Our model might provide insight into AMD progression and help to develop novel therapies. ABSTRACT: Aging-associated chronic oxidative stress and inflammation are known to be involved in various diseases, e.g., age-related macular degeneration (AMD). Previously, we reported the presence of dry AMD-like signs, such as elevated oxidative stress, dysfunctional mitophagy and the accumulation of detrimental oxidized materials in the retinal pigment epithelial (RPE) cells of nuclear factor erythroid 2-related factor 2, and a peroxisome proliferator-activated receptor gamma coactivator 1-alpha (NFE2L2/PGC1α) double knockout (dKO) mouse model. Here, we investigated the dynamics of inflammatory markers in one-year-old NFE2L2/PGC1α dKO mice. Immunohistochemical analysis revealed an increase in levels of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in NFE2L2/PGC1α dKO retinal specimens as compared to wild type animals. Further analysis showed a trend towards an increase in complement component C5a independent of component C3, observed to be tightly regulated by complement factor H. Interestingly, we found that thrombin, a serine protease enzyme, was involved in enhancing the terminal pathway producing C5a, independent of C3. We also detected an increase in primary acute phase C-reactive protein and receptor for advanced glycation end products in NFE2L2/PGC1α dKO retina. Our main data show C5 and thrombin upregulation together with decreased C3 levels in this dry AMD-like model. In general, the retina strives to mount an orchestrated inflammatory response while attempting to maintain tissue homeostasis and resolve inflammation

    Depletion of the Third Complement Component Ameliorates Age-Dependent Oxidative Stress and Positively Modulates Autophagic Activity in Aged Retinas in a Mouse Model

    No full text
    The aim of the study was to investigate the influence of complement component C3 global depletion on the biological structure and function of the aged retina. In vivo morphology (OCT), electrophysiological function (ERG), and the expression of selected oxidative stress-, apoptosis-, and autophagy-related proteins were assessed in retinas of 12-month-old C3-deficient and WT mice. Moreover, global gene expression in retinas was analyzed by RNA arrays. We found that the absence of active C3 was associated with (1) alleviation of the age-dependent decrease in retinal thickness and gradual deterioration of retinal bioelectrical function, (2) significantly higher levels of antioxidant enzymes (catalase and glutathione reductase) and the antiapoptotic survivin and Mcl-1/Bak dimer, (3) lower expression of the cellular oxidative stress marker—4HNE—and decreased activity of proapoptotic caspase-3, (4) ameliorated retinal autophagic activity with localization of ubiquitinated protein conjugates commonly along the retinal pigment epithelium (RPE) layer, and (5) significantly increased expression of several gene sets associated with maintenance of the physiological functions of the neural retina. Our findings shed light on mechanisms of age-related retinal alterations by identifying C3 as a potential therapeutic target for retinal aging

    Pinosylvin Extract Retinari™ Sustains Electrophysiological Function, Prevents Thinning of Retina, and Enhances Cellular Response to Oxidative Stress in NFE2L2 Knockout Mice

    No full text
    Publisher Copyright: © 2021 Toni Tamminen et al.Chronic oxidative stress eventually leads to protein aggregation in combination with impaired autophagy, which has been observed in age-related macular degeneration. We have previously shown an effective age-related macular degeneration disease model in mice with nuclear factor-erythroid 2-related factor-2 (NFE2L2) knockout. We have also shown pinosylvin, a polyphenol abundant in bark waste, to increase human retinal pigment epithelium cell viability in vitro. In this work, the effects of commercial natural pinosylvin extract, Retinari™, were studied on the electroretinogram, optical coherence tomogram, autophagic activity, antioxidant capacity, and inflammation markers. Wild-type and NFE2L2 knockout mice were raised until the age of 14.8±3.8 months. They were fed with either regular or Retinari™ chow (141±17.0 mg/kg/day of pinosylvin) for 10 weeks before the assays. Retinari™ treatment preserved significant retinal function with significantly preserved a- A nd b-wave amplitudes in the electroretinogram responses. Additionally, the treatment prevented thinning of the retina in the NFE2L2 knockout mice. The NFE2L2 knockout mice showed reduced ubiquitin-tagged protein accumulation in addition to local upregulation of complement factor H and antioxidant enzymes superoxide dismutase 1 and catalase. Therefore, the treatment in the NFE2L2 KO disease model led to reduced chronic oxidative stress and sustained retinal function and morphology. Our results demonstrate that pinosylvin supplementation could potentially lower the risk of age-related macular degeneration onset and slow down its progression.Peer reviewe
    corecore